Boffins Build Blood-Swimming Medical Microbot
25th February 2012
And about time, too.
The breakthrough at the heart of what her group’s ISSCC paper defines as “fully autonomous implantable systems with locomotion” was how to wirelessly supply power to a tiny chip that can swim in your blood – or in any fluid, for that matter. Simply put, earlier assumptions about how electromagnetic power would traverse human tissue were wrong.
It had been assumed for years that the high-frequency waves required for antennas small enough to fit on an intraveneous voyager would be absorbed by muscles, guts, and other innards, but Poon’s research discovered that not to be the case.